A robust approach for tree segmentation in deciduous forests using small-footprint airborne LiDAR data

نویسندگان

  • Hamid Hamraz
  • Marco A. Contreras
  • Jun Zhang
چکیده

This paper presents a non-parametric approach for segmenting trees from airborne LiDAR data in deciduous forests. Based on the LiDAR point cloud, the approach collects crown information such as steepness and height on-the-fly to delineate crown boundaries, and most importantly, does not require a priori assumptions of crown shape and size. The approach segments trees iteratively starting from the tallest within a given area to the smallest until all trees have been segmented. To evaluate its performance, the approach was applied to the University of Kentucky Robinson Forest, a deciduous closed-canopy forest with complex terrain and vegetation conditions. The approach identified 94% of dominant and co-dominant trees with a false detection rate of 13%. About 62% of intermediate, overtopped, and dead trees were also detected with a false detection rate of 15%. The overall segmentation accuracy was 77%. Correlations of the segmentation scores of the proposed approach with local terrain and stand metrics was not significant, which is likely an indication of the robustness of the approach as results are not sensitive to the differences in terrain and stand structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of Individual Tree Crowns in Airborne Lidar Data

Laser scanning provides a good means to collect information on forest stands. This paper presents an approach to delineate single trees automatically in small footprint light detection and ranging (lidar) data in deciduous and mixed temperate forests. In rasterized laser data possible tree tops are detected with a local maximum filter. Afterwards the crowns are delineated with a combination of ...

متن کامل

A Sensitivity analysis for a novel individual tree segmentation algorithm using 3D lidar point cloud data

LiDAR sampling or full-area coverage is deemed as favorable means to achieve timely and robust characterizations of vertically distributed forest attributes. So far, two main strategies on the use of LiDAR data in forestry are reported: area-based method (ABA) and individual tree method (ITC). Recently, a novel 3D segmentation approach has been developed for extracting single trees from LIDAR d...

متن کامل

Characterizing the Height Structure and Composition of a Boreal Forest Using an Individual Tree Crown Approach Applied to Photogrammetric Point Clouds

Photogrammetric point clouds (PPC) obtained by stereomatching of aerial photographs now have a resolution sufficient to discern individual trees. We have produced such PPCs of a boreal forest and delineated individual tree crowns using a segmentation algorithm applied to the canopy height model derived from the PPC and a lidar terrain model. The crowns were characterized in terms of height and ...

متن کامل

Combined Tree Segmentation and Stem Detection Using Full Waveform Lidar Data

The study highlights a new method for the delineation of tree crowns and the detection of stem positions of single trees from dense airborne LIDAR data. At first, we combine a method for surface reconstruction, which robustly interpolates the canopy height model (CHM) from the LIDAR data, with a watershed algorithm. Stem positions of the tallest trees in the tree segments are subsequently deriv...

متن کامل

Integration of LiDAR and Landsat Data to Estimate Forest Canopy Cover in Coastal British Columbia

Disclaimer: The PDF document is a copy of the final version of this manuscript that was subsequently accepted by the journal for publication. The paper has been through peer review, but it has not been subject to any additional copy-editing or journal specific formatting (so will look different from the final version of record, which may be accessed following the DOI above depending on your acc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2016